The Normal Index of a Maximal Subgroup of a Finite Group

نویسندگان

  • N. P. MUKHERJEE
  • Warren J. Wong
چکیده

For a maximal subgroup M of a finite group G , the normal index r¡(G : M) is defined to be the order of a chief factor H/K where H is minimal in the set of supplements of M in G . We obtain several results on the normal index of maximal subgroups M of composite index in G with [G : M]p = 1 which imply G to be solvable, supersolvable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups in which every subgroup has finite index in its Frattini closure

‎In 1970‎, ‎Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali‎, ‎ Atti Accad‎. ‎Naz‎. ‎Lincei Rend‎. ‎Cl‎. ‎Sci‎. ‎Fis‎. ‎Mat‎. ‎Natur. 48 (1970)‎, ‎559--562.] gave a complete description of the structure of soluble $IM$-groups‎, ‎i.e.‎, ‎groups in which every subgroup can be obtained as intersection of maximal subgroups‎. ‎A group $G$ is said to have the $FM$...

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

The nc-supplemented subgroups of finite groups

A subgroup $H$ is said to be $nc$-supplemented in a group $G$ if there exists a subgroup $Kleq G$ such that $HKlhd G$ and $Hcap K$ is contained in $H_{G}$, the core of $H$ in $G$. We characterize the supersolubility of finite groups $G$ with that every maximal subgroup of the Sylow subgroups is $nc$-supplemented in $G$.

متن کامل

On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly

The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...

متن کامل

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010